Multiscale Facial Expression Recognition Using Convolutional Neural Networks
نویسنده
چکیده
Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. We propose a datadriven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also robust with regard to face location changes and scale variations. This is achieved by deploying convolutional neural networks. We show that the use of multiscale feature extractors and whole-field feature map summing neurons allow to improve facial expression recognition results, especially with test sets that feature scale, respectively, translation changes.
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملFacial Expression Recognition with Convolutional Neural Networks
Facial expression recognition systems have attracted much research interest within the field of artificial intelligence. Many established facial expression recognition (FER) systems apply standard machine learning to extracted image features, and these methods generalize poorly to previously unseen data. This project builds upon recent research to classify images of human faces into discrete em...
متن کاملSubject independent facial expression recognition with robust face detection using a convolutional neural network
Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In ...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کامل